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Proof of uniqueness of the Kerr-Newman black hole 
solution 
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Jagellonian University, Institute of Physics, 30-059 Krakbw, ul Reymonta 4, Poland 

Received 13 April 1982 

Abstract. The electrovacuum Ernst equations are formulated as a nonlinear cr-model on 
the symmetric (Kahler) space SU(1,2)/S(U(1) x U(2)). It is shown, using this formulation, 
that a generalised Robinson-type identity for the electrovacuum Ernst equations may be 
derived. A special role played in the derivation of this identity by the hidden symmetry 
group SU(1,2) is established. A theorem is proven that the only possible exterior solution 
for a (pseudo-) stationary, rotating, electrovacuum black hole with non-degenerate event 
horizon is the Kerr-Newman solution with m 2 -  a’- P2 - Q2 > 0. 

1. Introduction 

The only possible pure vacuum exterior solution for a stationary, rotating, uncharged 
black hole with non-degenerate event horizon is the Kerr solution. This uniqueness 
theorem has been proved by Robinson (1975). Israel (1967) demonstrated that the 
Schwarzchild solution is the only possible vacuum, stationary, non-rotating (static) 
and uncharged black hole solution. He was able to generalise this theorem to the 
electromagnetic case, showing the uniqueness of the Reissner-Nordstrom black hole 
solution (Israel 1968). It was still an open question how the result of Robinson would 
be affected by the presence of an electromagnetic field. There exists a stationary, 
rotating black hole solution of the source-free Einstein-Maxwell equations-the 
four-parameter Kerr-Newman solution (Newman et a1 1965). 

The purpose of this paper is to prove uniqueness of the Kerr-Newman black hole 
solution with m 2  - a 2  - P2 - Q2 > 0. 

2. The field equations and the black hole boundary conditions 

We shall make the simplifying assumption of axisymmetry using the Hawking strong 
rigidity theorem (Hawking 1972, Ellis and Hawking 1973), according to which a 
stationary, rotating black hole must be axisymmetric. In the axisymmetric stationary 
case Carter (1973) has reformulated the Einstein-Maxwell field equations in the 
manner described by Ernst (1968a, b). The field equations take on the particularly 
simple form 

V(PV&) + p x - l ( v &  + 2rjlV*)V& = 0, 

V(pV*) +pX-l(v& +24V*)V* = 0, 
(2.1) 

(2.2) 
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where 

E = - X - E ’ - B 2 + i Y ,  = E + iB, (2.3) 

and V denotes the covariant derivative with respect to the two-dimensional metric 

ds2 = dA ’/(A - c’)  + d p  ’/( 1 - p ’), (2.4) 

where the coordinate range of A and p is -1 < p < 1, c < A < 00 and 

The causality requirement implies that X is everywhere positive in the domain of 
outer communication, apart from the symmetry axis where it is equal to 0. 

Carter (1973) has shown that there is a one-one correspondence between the 
stationary, axisymmetric black hole exterior solution of the Einstein-Maxwell 
equations and solutions to the equations (2.1) and (2.2) subject to the following 
boundary conditions. 

(i) The asymptotic flatness is ensured by the requirement that E, B, Y and A-2X 
are well behaved functions of A-’ and p in the limit A-’ + 0 and 

E = -Qp +O(A-’), 

Y = 2Jp (3 - CC. 2, + O(A -I), 

B = -Pp +O(A-’), 

A -2X = (1 - p2)[1 + O(A-’)], 
(2 .6)  

where J,  Q and P are the asymptotically conserved angular momentum, electric and 
magnetic monopole charges. 

(ii) Regularity of the exterior black hole solution on the symmetry axis and the 
event horizon demand that E, B, X ,  Y should be well behaved functions of p and A 
there, with 

E,, = 0(1) ,  E,A = o ( 1 - p 2 ) ,  

Y , ,  + 2(EB,, -BE, , )  = O( 1 - p’), 
(2.7) 

y , A  = o((1 -@2)2) ,  

as p -+ +1 (the symmetry axis) and 

as A + c (the event horizon), 

3. The connection between the Ernst equations and the nonlinear a-model on the 
hyperbolic symmetric space SU(1,2)/S(U(l) x U(2)) 

The basic point of our demonstration of uniqueness of the Kerr-Newman black hole 
solution is the generalisation of Robinson’s identity to the el’ectromagnetic case 
(Robinson 1975). The generalisation is the result of inner symmetries of the Ernst 
equations. In a recent paper of the author (Mazur 1982) it has been shown that the 
electro-vacuum Ernst equations can be interpreted as the nonlinear a-model equations 
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on the symmetric (Kahler) space SU(1,2)/S(U(l) x U(2)); similarly vacuum Ernst 
equations correspond to the nonlinear a-model on the SU( l , l ) /U(  1) hyperbolic 
symmetric space (Mazur 1982). Gruszczak (1981) established a connection between 
the vacuum Ernst equations and the SL(2, R)/S0(2) a-model. We have worked with 
the traditional form of the field equations, in terms of the metric components V and 
W (in the notation of Carter (1973)), which is very convenient for studying the 
asymptotic properties of space-time, showing that there exists a very simple Lagrangian 
from which the Ernst equations can be derived. Incidentally, it turned out that this 
Lagrangian is related in a simple way to that previously obtained by Carter (1973); 
namely, using -X in place of V we obtain Carter's Lagrangian from ours. The positive 
definite Lagrangian density written in terms of E and + reads 

1 (Ve + 2tJV*)(VE + 2*VtJ) v*v$ p=- +2- 
2 X 2  x -  

It is easily seen that under the homographic change of field variables 

E = -  E-1 *=- 77 
t+ l '  [+1 '  

(3.1) 

(3.2) 

the Lagrangian density 9 takes the form 

2=2(1-&r/f)-2[(1 -r/f)V[vg+(l -&Vr/Vf +&jVr/Vf+?gV[Vf], (3.3) 

which makes the relationship to the nonlinear a-model on the Kahler symmetric space 
DlP2 transparent. In fact, one can see that the requirement of positivity of X implies 

si+ vi < 1, (3.4) 
and the Lagrangian density 2' defines the Bergmann metric gas  on the bounded 
symmetric domain D1,2 in C2 (equation (3.4)) (Kobayashi and Nomizu 1969) 

ds2=gof idzUddia=2 dS")+(7 i"dz")  
(I 

x(? z m  dIff)]/( 1 -7 z"i")', (3.5) 

where z1 = 6 and z 2  = 7. 
The Lagrangian density (3.3) determines the harmonic map (Misner 1978) between 

a two-dimensional plane with the metric (2.4) and the Kahler symmetric space 
Dl.2 ( D I , ~  = SU(l,2)/S(U(l) X U(2)). The Kinnersley covariance group SU(1,2) 
(Kinnersley 1973) acts transitively (effectively) on D1,2. 

Eichenherr and Forger (1980) have shown that there exists a natural group- 
theoretical formulation of two-dimensional nonlinear a-models of Riemannian sym- 
metric space G/H in terms of a single G-valued field. Let us consider the nonlinear 
a-model on the Riemannian symmetric space G / H  = SU(p, q)/S(U(p) x U(q)). The 
symmetric space is a triple (G,  H, a ) ,  where G is a connected Lie group, and H is a 
closed subgroup of G defined by an involutive automorphism a of G such that 
(G,)o c H c G, with G, and (G,)o being the set of fixed points of a and its identity 
component, respectively (Kobayashi and Nomizu 1969). 

The Lagrangian density for the a-model on G/H is given by 

2 = %j&, j " ) ,  (3.6) 
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where ( , ) is a left G-invariant Riemannian metric on G / H  and j ,  is the right 
H-invariant current 

i, = 2D,gg-', (3.7) 

where 

is the horizontal part of V,g. 

G/H into G defined by 
However, there is a theorem due to Cartan (1930) that a smooth mapping @ of 

@k) = g d g ) - ' ,  (3.9) 

is a diffeomorphism of G / H  onto the totally geodesic (closed) submanifold of G. The 
G-valued field 0 satisfies a constraint 

@U(@) =I.  (3.10) 

In terms of @ the current j ,  reads 

j, = V,@@? (3.11) 

In the case under consideration G = SU( p ,  q )  and the involutive automorphism u is 
defined by 

d g )  = 7 7 g d  (3.12) 

where 

-Ip 0 
77 =diag(-1 . , . -1 +1 , . , , +l). (3.13) .=( 0 I,) Or 9 

The G-valued field (3 in this case is a Hermitian positive definite matrix 

@ = gg', (3.14) 

In the case when p = 1 @ can be parametrised in a very simple way, as a consequence 

@"@ = + 2 p 4 ,  a = O , l ,  . . . ,  q, (3.15) 

because g E SU(p, q )  implies u ( g ) - l  = g+.  

of (3.10): 

where 

pa@ = vQo@ and U " T @ @  = (U, U )  = -1. (3.16) 

The last equation (3.16) corresponds to the fact that SU(1, q)/S(U(l) x (4)) is a 
Hermitian, hyperbolic space and U" are the Kinnersley coordinates on this space 
(Kinnersley 1973). Introducing other coordinates on SU(1, q) /S(U(l)  x U(q)) defined 

(3.17) 

one sees easily that the Lagrangian density for a nonlinear u-model on this symmetric 
space, 

(3.18) 

by 

6" = U"/UO, a = 1, . . . , q, 

9 = a Tr( j ,  j " ) ,  
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is equivalent to the Lagrangian density for the Ernst electrovacuum equations (3.3) 
when q = 2 and 

5l = 5, e2 = 77. (3.19) 

Similarly, the case q = 1 corresponds to pure vacuum Ernst equations. 
The field equations derived from the Lagrangian density (3.18) have the form 

V , W )  = 0, (3.20) 

and are equivalent to the Noether conservation law implied by the invariance of the 
action integral under global left G( = SU( p ,  q))-translations. 

4. The identity and the proof of uniqueness of the Ken-Newman black hole 
solution 

We shall demonstrate that the Robinson identity (Robinson 1975) is a consequence 
of the inner (hidden) symmetry of Ernst’s equations. In the formulation of the Ernst 
equations presented above, the identity appears naturally in its G-invariant form 
(G = SU(1, q), q = 1,2). 

Let us consider two fields cP1 and a2, not necessarily solutions of the field equations 
(3.20), and define a field Q, by 

Q, = Q,1Q,; l .  (4.1) 
One can see from (3.14) that Q, has the form 

Q, = glMgT1, 
where 

(4.2) 

M = g + g  and g = g ; k .  (4.3) 

Q,l = uQ,u-l, ~ E G .  (4.4) 

Q, transforms under the left G-translations, g l  + ugl and g2 + ug2 as follows: 

Now,’ having defined a field Q,, we consider, using (3.11) and (4.1), the following 
identities: 

(4.5) V,Q, = j ; )  Q, - ai:), 
where 

i = 1,2,  (4.6) 

(4.7) 

j ; )  = v,@(i)~,(i)-l, 

and 
V,(pV@Q,) = V,(pj(l)W)Q, - Q,v,(pj(2)’”) + p ( ] &  4 1 )  ] 41)P Q, + Q,jl”i(*)” - 2 j ; )Q ,p ) .  

The form of the identity invariant under the global left G-translations can be obtained 
by taking the trace of (4.7). Then, we have the final G-invariant form of the identity 

Tr{Q,[V, 

2i:)i(1),]}* (4.8) 

The identity (4.8) is the generalised Robinson identity for the nonlinear cr-model on 
the SU(p, q ) / S ( U ( p )  x U ( q ) )  symmetric space. For the case when p = 1 and q = 1.2 

- V, ( p j ( l ) w ) ] }  + Tr V, (pV”Q,) 
( 1 )  (I), +jj12)j(2)rr - 

= P Tr{Q,[i, i 
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we have the pure vacuum Robinson identity and its generalisation to the electrovacuum 
case. The main advantage of this form of the identity is its independence of the 
particular parametrisation of SU( 1, q)/S(U( 1) x U(4)) and the manifest invariance 
under the hidden symmetry group of Ernst's equations. Taking the Ernst parametrisa- 
tion of SU(1, q)/S(U(l) x U(q)), we have 

= ? l a p  - 25"51@/(5,5), (4.9) 
where 

(5,5)=-1+C5"P, cy = 1, . * . , q. 
a 

In particular, we have for the vacuum and electrovacuum cases 

(4.10) 

(4.11) 

(4.12) 
2ri i 1 277 27751 l+Tri--551 

1 + sz+ 77ji 251 
@=(l-(f-qji)-l 25 1+58-77ji 25ri > 

respectively. 
In order to draw conclusions about the uniqueness of solutions to the Ernst 

equations we need only the form of Tr(Q1qi1) in terms of Ernst's potentials c1, qbl, 
c 2 ,  and qb2 (for the electrovacuum case) and the proof of positivity of the right-hand 
side of the identity (4.8). 

Tr @ = Tr(@,@;') = 2 +X;'X;' [ ( X ,  -X2)' + ( Y 1  - Y2)'], 

Tr @ =  3+X~1X~'{(X,-X2)2+2(X1+X2)[(El-E2)2+(B1-B2)2] 

From (3.2), (4.11) and (4.12) we have 

(4.13) 

+ [(El - E z ) ~  + (B1- B2)2]2 + [ Y1- Y2 + E2B1 -E1B212}, (4.14) 

for the vacuum and electrovacuum cases, respectively. 
It can easily be seen from (4.13) that the total divergence term of the identity 

(4.8) corresponds to that of Robinson (1975). One should note that the positivity of 
a Hermitian matrix M in (4.3) implies that Tr @ is real and 

(4.15) 

where the equality holds when g E H = S(U( 1) x U(4)) and therefore O1 = @z,  @ = I. 
It is in agreement with (4.13) and (4.14). The right-hand side of the identity (4.8) is 
real and positive. This can be seen as follows. From (3.11) and (3.14) we have 

Tr @ = Tr M 3 1 +q,  

(4.16) 

(4.17) 

(4.18) 

Using (3.11), (4.2), (4.3), (4.16) and (4.18) we have 

R = p Tr{gk; 'k"'@g++ g'kF'k'2'"g - 2kF~""""gf}, (4.19) 

where R denotes the right-hand side of the identity (4.8). 
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(4.20) 

(4.21) 

R is real if the third term in (4.21) is real. One can see from (4.18) and (4.20) that 
the third term in (4.21) is real and 

& (4.22) Tr(Pf)P(l)W+) = Tr(P(i)P(2)W+). 

Therefore, we have 

R = p  Tr[(P‘”-P‘2’) , (P(1)+-P(2)+)cr]=p Tr{m,m’”+}>O, (4.23) 

= p( l )  -p(2) = ( j ( 1 ’ -  j(2’)gl. (4.24) 

If the right-hand side R of the identity (4.8) vanishes then m is equal to zero. From 
(3.7) and (3.8) it follows that m can be written in the form 

where 

(4.25) 

Equation (4.25) implies that there are two possibilities if the right-hand side R of the 
identity vanishes: 

(i) Dg=O if g is a local function and gEH.  This leads to the conclusion that 
(Dl = a2 independently of the boundary conditions on CP1 and a2. 

(ii) Dg = 0 if g is a constant matrix and g E G(= SU(1,q)). 

Proof of uniqueness of the Kerr-Newman black hole solution 
Let (XI, Y l ,  El, B 1 )  and (X2, Y2, Et, B2) (or Ql and tP2) be two black hole solutions 
of the Einstein-Maxwell equations with a regular domain of outer communication 
satisfying Carter’s boundary conditions (2.6), (2.7) and (2.8). Suppose that 
(XI, Y I ,  El, B1) corresponds to the Kerr-Newman solution with m2 - a’- P2 - Q 2  > 
0. The boundary integral which appears on the left-hand side of the identity (4.8) 
integrated over the two-dimensional space, after the application of Stokes’ theorem, 
can be shown to vanish if the boundary conditions (2.6), (2.7) and (2.8) are satisfied. 
This implies that the right-hand side R of the identity (4.8) must vanish. However, 
R vanishes if (ii) (the second possibility) is satisfied. This leads to a simple relation 
on the solutions @I and Q,z 

(4.26) 

The application of the boundary conditions to the equations (4.14) and (4.26) 

c=TrQ,=3 ,  (4.27) 

Tr Q, = Tr(g+g) = c, 

where c is a constant. 

leads to 

and hence 

01 = 0 2 .  (4.28) 
This shows the uniqueness of the Kerr-Newman black hole solution. 
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